Climate impacts on marine ecosystems may be exacerbated by other, more local stressors interacting synergistically, such as pollution and overexploitation of marine resources.

The reduction of these human stressors has been proposed as an achievable way of retaining ecosystems within a “safe operating space” (SOS), where they remain resilient to ongoing climate change. However, the operability of an SOS requires a thorough understanding of the spatial distribution of these climate and human impacts.

This paper illustrates, using the Mediterranean Sea as a case study, the spatial congruence between climate and human stressors impacting this iconic “miniature ocean” synergistically. This is done by using long-term, spatially-explicit information on the distribution of multiple stressors to identify those highly impacted marine areas where human stressors should be prioritized for management if the resilience to climate impacts is to be maintained.

The results of the undertaken spatial analysis exemplify how the management of an essential supporting service (seafood provision) and the conservation of a highly impacted Mediterranean sub-region (the Adriatic Sea) may benefit from the SOS framework.

It is highlighted that management and conservation strategies may benefit from fine-scale, spatially-explicit assessments on the distribution of climate and human stressors such as those provided in the study.

https://www.nature.com/articles/s41598-018-33237-w

Ramírez et al. (2018) Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Scientific Reports 8:14871.